(因為忙,所以先用AI把之前的paper產生了這頁的摘要,之後再精修)

(Due to being busy, I used AI to generate summaries from my papers for this page, will refine later)

Loyn hammer

「手上的巨槌絕不是裝飾品,每當陸地上有地震發生,靠著一把槌子便能全部解決!」

—Loyn, 2025

"The giant hammer in my hand is definitely not just decoration. Whenever earthquakes occur on land, I can solve them all with just one hammer!"

—Loyn, 2025

全波形逆推在區域性地殼與上地函成像的發展與應用

近年來,地球物理學界逐漸將焦點從傳統走時層析技術轉向可提供更高解析度的全波形逆推(Full-Waveform Inversion, FWI)。FWI 透過擬合完整的地震波形訊號,在逆推中保留更多震波的振幅與形狀資訊,因而具有解析複雜構造細節的潛力。

本研究主題自 2022 年起,逐步從方法論的建立、跨區域的實作驗證,再推進到應用於台灣這類複雜地質構造區,形成一個完整的技術與科學探究架構。

1. 方法建立與理論基礎(Kan et al. 2022, GJI)

在 Geophysical Journal International 發表的理論研究中,提出了一套具一致性的多參數貝氏全波形逆推框架。該方法強調模型參數(密度、P 波與 S 波速度)之間的物理相關性,並透過非對角的模型共變異數矩陣作為逆推中的先驗資訊,有效降低了參數之間的逆推交叉干擾與不穩定性問題。數值測試顯示,此方法在逆推深部密度與剪切波速度異常方面,能顯著改善傳統方法的限制。

2. 在卡斯卡地亞隱沒帶的實地應用(Kan et al. 2023, JGR: Solid Earth)

第二篇研究將此方法首次應用於美國奧勒岡州的 Cascadia 隱沒帶,透過對 teleseismic P 波與 SH 波完整波形的逆推,成功解析出一層東傾、厚度僅 10 公里的低速層,與過去 receiver function 觀測到的流體飽和洋殼相一致。

研究指出:

  • 洋殼在約 40 公里深處開始脫水變質為榴輝岩(eclogitization),釋出的矽飽和流體向上遷移至 forearc 地函,造成蛇紋石化反應,使地震速度與密度降低。
  • 更淺處的前弧地殼呈現異常低的 VP/VS 比,反映出石英沈澱與流體注入的訊號。
  • 約 75 公里深處觀測到低速與高 VP/VS 異常,可能與部分熔融區有關,顯示板塊脫水產生的流體可降低固相線溫度並觸發岩漿活動。

此研究首次從波形逆推的角度提供證據支持流體釋放、傳遞與地函反應之間的因果關聯,並展示此類構造在地球物理參數空間中的表現方式。

3. 台灣地區的高解析地殼與隱沒構造成像(Kan et al. 2025, in prep)

第三篇研究則將此框架應用於台灣這個典型的弧陸碰撞帶。透過來自全球遠震事件的 P 波與 SH 波資料,建立了台灣地區高解析的三維密度、P 波、S 波速度與 VP/VS 模型。成像結果揭示了多項關鍵構造:

  • 歐亞板塊隱沒板塊在中央山脈下方呈現非地震性的破裂與脫離,在 130–200 公里深度形成 slab gap,北部進一步與菲律賓海板塊隱沒交疊,呼應 slab tearing 或 slab breakoff 機制。
  • 中央山脈下方地殼厚達 55 公里,VP/VS 比高,顯示流體可能因脫水作用注入下地殼。
  • 在火山區(如大屯火山群與龜山島)下方,模型清楚解析出淺部低速異常體,對應過去推測的岩漿庫。

同時進行的棋盤測試也顯示此方法在台灣具備良好的橫向與深度解析度,能有效成像 20–60 公里尺度的異常體,補足過去走時層析無法解析的構造細節。

小結與展望

這三篇工作展示了從方法建立、實地驗證到區域地質應用的完整流程,突顯了全波形逆推技術在現代地震層析中的潛力。

未來此方法可望進一步應用於其他隱沒帶、造山帶與火山系統,以提供更精細的地震參數模型,並協助解釋地球深部的流體、溫度與岩石變質過程。

Development and Application of Full-Waveform Inversion for Regional-Scale Crust and Upper Mantle Imaging

In recent years, geophysical research has increasingly shifted from traditional traveltime tomography to full-waveform inversion (FWI), a technique that utilizes complete seismic waveforms to achieve high-resolution subsurface imaging. By capturing both phase and amplitude information, FWI offers significantly improved sensitivity to complex geological structures.

This research theme, initiated in 2022, evolved through a logical sequence: establishing a theoretical framework, validating the method in a well-studied subduction zone, and applying it to the structurally complex region of Taiwan. It represents a coherent and integrated development in both methodology and geophysical application.

1. Theoretical Foundation (Kan et al. 2022, GJI)

Published in Geophysical Journal International, the 2022 study introduced a consistent Bayesian multiparameter inversion framework for isotropic elastic media. The novelty lies in incorporating prior correlations between model parameters—density, P-wave velocity (VP), and S-wave velocity (VS)—through a non-diagonal model covariance matrix.

Synthetic tests demonstrate that this approach significantly reduces parameter trade-offs and enhances the recovery of density and shear wave anomalies at depth, particularly in teleseismic settings where sensitivity to deep structures is limited.

2. Application to the Cascadia Subduction Zone (Kan et al. 2023, JGR: Solid Earth)

The second study applied this inversion scheme to the Cascadia subduction zone in central Oregon, using teleseismic P and SH waveforms from the CASC93 array. The resulting models revealed:

  • A thin (<10 km) east-dipping low-velocity layer interpreted as the fluid-saturated subducting Juan de Fuca oceanic crust.
  • A progressive increase in velocity and density below 40 km, marking the onset of eclogitization.
  • Upward migration of silica-rich fluids into the forearc mantle, triggering serpentinization and reducing seismic velocities.
  • Extremely low VP/VS ratios in the forearc crust, indicating extensive quartz mineralization.
  • A low-velocity, high VP/VS anomaly beneath the volcanic arc at ~75 km depth, consistent with partial melting triggered by slab dehydration.

These results provide direct seismic evidence for deep fluid transport, metamorphic reactions, and melting processes, linking them with structural and compositional changes in the lithosphere.

3. Imaging Complex Structures Beneath Taiwan (Kan et al. 2025, in preparation)

The most recent work applied the same methodology to Taiwan, a region shaped by arc–continent collision and subduction polarity reversal. By inverting complete P and SH teleseismic waveforms recorded across the island, the study produced high-resolution 3-D models of density, VP, VS, and VP/VS. Key findings include:

  • Imaging of the aseismic and detached segment of the Eurasian slab beneath central Taiwan, with a slab gap forming at 130–200 km depth north of 23.5°N, consistent with slab breakoff or tearing.
  • A thickened crustal root (>50 km) beneath the Central Range, with elevated VP/VS values in the lower crust, possibly reflecting fluid infiltration from slab dehydration.
  • Detailed velocity anomalies beneath the Tatun Volcano Group and Turtle Island, corresponding to shallow magma reservoirs.

Resolution tests (checkerboard models) confirmed that the method can reliably resolve structures at 20–60 km scale throughout the lithosphere, providing sharper images than conventional traveltime tomography.

Summary and Outlook

This series of studies demonstrates a complete research arc—from theoretical development, through field validation, to practical application in tectonically complex regions.

The results highlight the potential of multiparameter FWI to recover key geophysical properties and illuminate deep Earth processes such as fluid release, metamorphism, and crustal thickening.

Future applications may extend to other subduction zones, orogenic belts, and volcanic regions, contributing to a more accurate understanding of lithospheric dynamics.